wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that

(i)log 12=log 3+log 4

(ii) log 50=log 2+2 log 5

(iii) log(1+2+3)=log 1+log 2+log 3


    Open in App
    Solution

    (i) We have,

    12=3×4

    log (3×4)

    log 12=log 3+log 4 [log mn=log m+log n]

    Thus, log 12=log 3+log 4.

    RHS= log 3+log 4=log (3×4)=log 12=LHS

    (ii) We have
    50=2×52
    log 50=log (2×52)
    =log 2+log 52 [log mn=log m+log n]=log 2+2 log 5 [log mn=n log m]

    ALTER RHS=log 2+2log 5
    =log 2+log 52 [n log m=log mn]=log (2×52) [log m+log n=log mn]=log 50=LHS

    (iii) We have,
    LHS=log (1+2+3)=log 6=log (1×2×3) [6=1×2×3]=log 1+log 2+log 3 [log (mnp)=log m+log n+log p]

    =RHS
    Hence, log (1+2+3)=log 1+log 2+log 3


    flag
    Suggest Corrections
    thumbs-up
    3
    Join BYJU'S Learning Program
    similar_icon
    Related Videos
    thumbnail
    lock
    Fundamental Laws of Logarithms
    MATHEMATICS
    Watch in App
    Join BYJU'S Learning Program
    CrossIcon