Prove that
(i)log 12=log 3+log 4
(ii) log 50=log 2+2 log 5
(iii) log(1+2+3)=log 1+log 2+log 3
(i) We have,
12=3×4
∴ log (3×4)
⇒ log 12=log 3+log 4 [∵log mn=log m+log n]
Thus, log 12=log 3+log 4.
RHS= log 3+log 4=log (3×4)=log 12=LHS
(ii) We have
50=2×52
∴ log 50=log (2×52)
=log 2+log 52 [∵log mn=log m+log n]=log 2+2 log 5 [∵log mn=n log m]
ALTER RHS=log 2+2log 5
=log 2+log 52 [∵n log m=log mn]=log (2×52) [∵log m+log n=log mn]=log 50=LHS
(iii) We have,
LHS=log (1+2+3)=log 6=log (1×2×3) [∵6=1×2×3]=log 1+log 2+log 3 [∵log (mnp)=log m+log n+log p]
=RHS
Hence, log (1+2+3)=log 1+log 2+log 3