wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:

(i) sec2 θ+cosec2 θ=sec2 θ cosec2 θ

(ii) tan2 θsin2 θ=tan2 θ sin2 θ

(iii) tan2 θ+cot2 θ+2=sec2 θ cosec2 θ

Open in App
Solution

(i)sec2 θ+cosec2 θ

=1cos2 θ+1sin2 θ=sin2 θ+cos2 θcos2 θ sin2 θ

=1cos2 θ sin2 θ [sin2 θ+cos2 θ=1]

=sec2 θ cosec2 θ

LHS = RHS


(ii)tan2 θsin2 θ

=sin2 θcos2 θsin2 θ=sin2 θsin2 θ cos2 θcos2 θ

=sin2 θ(1cos2 θ)cos2 θ=sin2 θcos2 θ.sin2 θ

=tan2 θ sin2 θ

LHS = RHS


(iii)tan2 θ+cot2 θ+2

=(1+tan2 θ)+(1+cot2 θ)=sec2 θ+cosec2 θ

=1cos2 θ+1sin2 θ=sin2 θ+cos2 θcos2 θ sin2 θ

=1cos2 θ sin2 θ=sec2 θ cosec2 θ

LHS = RHS

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon