Prove that:(i) 13+√7+1√7+√5+1√5+√3+1√3+1=1(ii) 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2
Prove that: (i)sin(60∘−θ)cos(30∘+θ)+cos(60∘−θ)sin(30∘+θ)=1 (ii) sin(4π7+7)cos(π9+7)−cos(4π9+7)sin(π9+7)=√32 (iii)sin(3π8−5)cos(π8+5)+cos(3π8−5)sin(π8+5)=1