wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
(i) sinπ3-xcosπ6+x+cosπ3-xsinπ6+x=1
(ii) sin4π9+7cosπ9+7-cos4π9+7sinπ9+7=32
(iii) sin3π8-5cosπ8+5+cos3π8-5sinπ8+5=1

Open in App
Solution

(i) π3=60°, π6=30°
LHS = sin60°-x cos30°+x +cos60°-x sin30°+x =sin60°-x+30°+x Using the formula sinA cosB + cosA sinB = sinA+B and taking A =60°-x and B =30°+x =sin90° =1 = RHSHence proved.

(ii)
sin4π9+7cosπ9+7-cos4π9+7sinπ9+7=sin4π9+7-π9+7 sinAcosB-cosAsinB=sinA-B=sin3π9=sinπ3=32

(iii)
sin3π8-5cosπ8+5+cos3π8-5sinπ8+5=sin3π8-5+π8+5 sinAcosB+cosAsinB=sinA+B=sin4π8=sinπ2=1

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon