Prove that :
(i) sin38∘+sin22∘=sin82∘
(ii) cos100∘+cos20∘=cos40∘
(iii) sin50∘+sin10∘=cos20∘
(iv) sin23∘+sin37∘=cos7∘
(v) sin105∘+cos105∘=cos45∘
(vi) sin40∘+sin20∘=cos10∘
(i) sin38∘+sin22∘=sin82∘∵sinC+sinD=2sinC+D2cosC−D2⇒sin38∘+sin22∘=2sin60∘2cos16∘2=2sin30∘cos8∘=2×12cos8∘=cos(90−82)∘=sin82∘=RHS[∵cosθ=sin(90−θ)]
(ii) cos100∘+cos20∘=cos40∘[∵cosC+cosD=2cosC+D2cosC−D2]⇒2cos(100∘+20∘)2cos(100∘−20∘)2=2cos60∘ cos40∘=2×12cos40∘[∵cos60∘=12]=cos40∘=RHS.
(iii) sin50∘+sin10∘=cos20∘LHS=sin50∘+sin10∘[∵sinC+sinD=2sinC+D2cosC−D2]sin50∘+sin10∘=2sin60∘wcos20∘=2sin30∘ cos20∘=2×12cos20∘=cos20∘=RHS [∵sin30∘12]
(iv) sin23∘+sin37∘=cos7∘LHS=sin23∘+sin37∘=2sin(23∘+37∘2)cos(23∘+37∘2)[∵sinC+sinD=2sinC+D2cosC−D2]=2sin(30)∘ cos(−7)∘=2×12cos7=cos7∘=RHS[∵cos(−θ)=cosθ,sin30∘=12]
(v) sin105∘+cos105∘=cos45∘LHS=sin105∘+cos105∘=sin105∘+cos(90∘+15∘)=sin105∘−sin15∘=2sin(105∘−15∘2)cos(105∘+15∘2)=2sin45∘ cos60∘=21√2×12=1√2=cos45∘=RHS
(vi) sin40∘+sin20∘=cos10∘LHS=sin40∘+sin20∘=2sin(40∘+20∘2)cos(40∘−20∘2)[∵sinC+sinD=2sinC+D2cosC−D2]=2sin30∘cos10∘=2×12cos10∘=cos10∘=RHS [∵sin30∘=12]