wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that :
(i) sin38+sin22=sin82
(ii) cos100+cos20=cos40
(iii) sin50+sin10=cos20
(iv) sin23+sin37=cos7
(v) sin105+cos105=cos45
(vi) sin40+sin20=cos10

Open in App
Solution

(i) sin38+sin22=sin82sinC+sinD=2sinC+D2cosCD2sin38+sin22=2sin602cos162=2sin30cos8=2×12cos8=cos(9082)=sin82=RHS[cosθ=sin(90θ)]

(ii) cos100+cos20=cos40[cosC+cosD=2cosC+D2cosCD2]2cos(100+20)2cos(10020)2=2cos60 cos40=2×12cos40[cos60=12]=cos40=RHS.

(iii) sin50+sin10=cos20LHS=sin50+sin10[sinC+sinD=2sinC+D2cosCD2]sin50+sin10=2sin60wcos20=2sin30 cos20=2×12cos20=cos20=RHS [sin3012]

(iv) sin23+sin37=cos7LHS=sin23+sin37=2sin(23+372)cos(23+372)[sinC+sinD=2sinC+D2cosCD2]=2sin(30) cos(7)=2×12cos7=cos7=RHS[cos(θ)=cosθ,sin30=12]

(v) sin105+cos105=cos45LHS=sin105+cos105=sin105+cos(90+15)=sin105sin15=2sin(105152)cos(105+152)=2sin45 cos60=212×12=12=cos45=RHS

(vi) sin40+sin20=cos10LHS=sin40+sin20=2sin(40+202)cos(40202)[sinC+sinD=2sinC+D2cosCD2]=2sin30cos10=2×12cos10=cos10=RHS [sin30=12]


flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon