wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
(i)sin(60θ)cos(30+θ)+cos(60θ)sin(30+θ)=1
(ii) sin(4π7+7)cos(π9+7)cos(4π9+7)sin(π9+7)=32
(iii)sin(3π85)cos(π8+5)+cos(3π85)sin(π8+5)=1


    Open in App
    Solution

    (i)sin(60θ)cos(30+θ)+cos(60θ)sin(30+θ)
    =sin[(60θ)+(30+θ)]
    =sin[60θ+30+θ]
    =sin(90)
    =1
    =RHS
    LHS=RHS
    Hence proved.
    (ii)LHS: sin(4π7+7)cos(π9+7)cos(4π9+7)sin(π9+7)
    =sin(4π9π9)
    =sin3π9=sinπ3=32
    =RHS
    LHS=RHS
    Hence proved.
    (iii)sin(3π85)cos(π8+5)+cos(3π85)sin(π8+5)
    sin[(3π85)+(π8+5)]
    =sin(3π8+π8)
    =sin4π8=sinπ2=1
    =RHS
    LHS=RHS
    Hence proved.


    flag
    Suggest Corrections
    thumbs-up
    0
    Join BYJU'S Learning Program
    similar_icon
    Related Videos
    thumbnail
    lock
    Trigonometric Ratios of Special Angles
    MATHEMATICS
    Watch in App
    Join BYJU'S Learning Program
    CrossIcon