Prove that:
(i)sin(60∘−θ)cos(30∘+θ)+cos(60∘−θ)sin(30∘+θ)=1
(ii) sin(4π7+7)cos(π9+7)−cos(4π9+7)sin(π9+7)=√32
(iii)sin(3π8−5)cos(π8+5)+cos(3π8−5)sin(π8+5)=1
(i)sin(60∘−θ)cos(30∘+θ)+cos(60∘−θ)sin(30∘+θ)
=sin[(60∘−θ)+(30∘+θ)]
=sin[60∘−θ+30∘+θ]
=sin(90∘)
=1
=RHS
∴LHS=RHS
Hence proved.
(ii)LHS: sin(4π7+7)cos(π9+7)−cos(4π9+7)sin(π9+7)
=sin(4π9−π9)
=sin3π9=sinπ3=√32
=RHS
∴LHS=RHS
Hence proved.
(iii)sin(3π8−5)cos(π8+5)+cos(3π8−5)sin(π8+5)
sin[(3π8−5)+(π8+5)]
=sin(3π8+π8)
=sin4π8=sinπ2=1
=RHS
∴LHS=RHS
Hence proved.