wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
(i) sin (60° − θ) cos (30° + θ) + cos (60° − θ) sin (30° + θ) = 1.
(ii) sin4π9+7cosπ9+7-cos4π9+7sinπ9+7=32
(iii) sin3π8-5cosπ8+5+cos3π8-5sinπ8+5=1

Open in App
Solution

(i)
LHS = sin60°-θ cos30°+θ +cos60°-θ sin30°+θ =sin60°-θ+30°+θ Using the formula sinA cosB + cosA sinB = sinA+B and taking A =60°-θ and B =30°+θ =sin90° =1 = RHSHence proved.

(ii)
sin4π9+7cosπ9+7-cos4π9+7sinπ9+7=sin4π9+7-π9+7 sinAcosB-cosAsinB=sinA-B=sin3π9=sinπ3=32

(iii)
sin3π8-5cosπ8+5+cos3π8-5sinπ8+5=sin3π8-5+π8+5 sinAcosB+cosAsinB=sinA+B=sin4π8=sinπ2=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon