wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
(i) sin 65° + cos 65° = 2 cos 20°
(ii) sin 47° + cos 77° = cos 17°

Open in App
Solution

(i)

Consider LHS:sin 65° + cos 65°= sin 65° + cos 90° - 25°= sin 65° + sin 25°= 2sin 65° + 25°2 cos 65° - 25°2 sin A + sin B = 2sin A + B2 cos A - B2= 2sin 45° cos 20°= 2×12 cos 20°= 2cos 20°= RHSHence, LHS = RHS.

(ii)

Consider LHS:sin 47° + cos 77°= sin 47° + cos 90°-13°= sin 47° + sin 13°= 2sin 47° + 13°2 cos 47° - 13°2 sin A + sin B = 2sin A + B2 cos A - B2= 2sin 30° cos 17°= 2×12cos 17°= cos 17°= RHSHence, LHS = RHS.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon