wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:

(i) sin(70+θ)cos(20θ)=0

(ii) tan(55θ)cot(35+θ)=0

(iii) cosec(67+θ)sec(23θ)=0

(iv) cosec(65+θ)sec(25θ)tan(55θ)+cot(35+θ)=0

(v) sin(50+θ)cos(40θ)+tan 1 tan 10 tan 80 tan 89=1

Open in App
Solution

(i) sin(70o+θ)cos(200θ)=0LHS=sin(70o+θ)cos(200θ)sin(70o+θ)sin(90o(200θ))sin(70o+θ)sin(70o+θ)=0=RHS

(ii) tan(55oθ)cot(35o+θ)=0LHS=tan(55oθ)cot(35o+θ)=cot(90o(55oθ))cot(35o+θ)=cot(35o+θ)cot(35o+θ)=0=RHS

(iii)cosec(67+θ)sec(23θ)=0=0LHS=cosec(67+θ)sec(23θ)=0=sec(90o(67o+θ))sec(23oθ)=sec(23oθ)sec(23oθ)=0=RHS

(iv) cosec(65+θ)sec(25θ)tan(55θ)+cot(35+θ)=0LHS=cosec(65+θ)sec(25θ)tan(55θ)+cot(35+θ)=sec(90o(65o+θ))sec(25oθ)cot(90o(55oθ))cot(35o+θ)=sec(25oθ)sec(25oθ)cot(35o+θ)+cot(35o+θ)=0RHS

(v) sin(50+θ)cos(40θ)+tan 1 tan 10 tan 80 tan 89=1LHS=sin(50+θ)cos(40θ)+tan 1 tan 10 tan 80 tan 89=cos(90o(50+θ))cos(40θ)+tan 1 tan 10 tan(90o80o) tan(90o89o)=cos(40θ)cos(40θ)+tan 1 tan 10 cot 1 cot 10=0+tan 1 tan 10 ×1tan 1×1tan 10=0+1=1=RHS


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Complementary Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon