Prove that:
(i) sin(70∘+θ)−cos(20∘−θ)=0
(ii) tan(55∘−θ)−cot(35∘+θ)=0
(iii) cosec(67∘+θ)−sec(23∘−θ)=0
(iv) cosec(65∘+θ)−sec(25∘−θ)−tan(55∘−θ)+cot(35∘+θ)=0
(v) sin(50∘+θ)−cos(40∘−θ)+tan 1∘ tan 10∘ tan 80∘ tan 89∘=1
(i) sin(70o+θ)−cos(200−θ)=0LHS=sin(70o+θ)−cos(200−θ)sin(70o+θ)−sin(90o−(200−θ))sin(70o+θ)−sin(70o+θ)=0=RHS
(ii) tan(55o−θ)−cot(35o+θ)=0LHS=tan(55o−θ)−cot(35o+θ)=cot(90o−(55o−θ))−cot(35o+θ)=cot(35o+θ)−cot(35o+θ)=0=RHS
(iii)cosec(67∘+θ)−sec(23∘−θ)=0=0LHS=cosec(67∘+θ)−sec(23∘−θ)=0=sec(90o−(67o+θ))−sec(23o−θ)=sec(23o−θ)−sec(23o−θ)=0=RHS
(iv) cosec(65∘+θ)−sec(25∘−θ)−tan(55∘−θ)+cot(35∘+θ)=0LHS=cosec(65∘+θ)−sec(25∘−θ)−tan(55∘−θ)+cot(35∘+θ)=sec(90o−(65o+θ))−sec(25o−θ)−cot(90o−(55o−θ))−cot(35o+θ)=sec(25o−θ)−sec(25o−θ)−cot(35o+θ)+cot(35o+θ)=0RHS
(v) sin(50∘+θ)−cos(40∘−θ)+tan 1∘ tan 10∘ tan 80∘ tan 89∘=1LHS=sin(50∘+θ)−cos(40∘−θ)+tan 1∘ tan 10∘ tan 80∘ tan 89∘=cos(90o−(50∘+θ))−cos(40∘−θ)+tan 1∘ tan 10∘ tan(90o−80o) tan(90o−89o)=cos(40∘−θ)−cos(40∘−θ)+tan 1∘ tan 10∘ cot 1∘ cot 10∘=0+tan 1∘ tan 10∘ ×1tan 1∘×1tan 10∘=0+1=1=RHS