wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that
(i) sin (70° + θ) − cos (20° − θ) = 0
(ii) tan (55° − θ) − cot (35° + θ) = 0
(iii) cosec (67° + θ) − sec (23° − θ) = 0
(iv) cosec (65 °+ θ) sec (25° − θ) − tan (55° − θ) + cot (35° + θ) = 0
(v) sin (50° + θ ) − cos (40° − θ) + tan 1° tan 10° tan 80° tan 89° = 1.

Open in App
Solution

(i) L.H.S=sin(700+θ)cos(200θ) =sin{900(200θ)}cos(200θ) =cos(200θ)cos(200θ) =0=R.H.S.(ii) L.H.S=tan(550θ)cot(350+θ) =tan{900(350+θ)}cot(350+θ) =cot(350+θ)cot(350+θ) =0=R.H.S.(iii) L.H.S=cosec(670+θ)sec(230θ) =cosec{900(230θ)}sec(230θ) =sec(230θ)sec(230θ) =0=R.H.S.(iv) L.H.S=cosec(650+θ)sec(250θ)tan(550θ)+cot(350+θ) =cosec{900(250θ)}sec(250θ)tan(550θ)+cot{900(550θ)} =sec(250θ)sec(250θ)tan(550θ)+tan(550θ) =0= R.H.S(v) L.H.S=sin(500+θ)cos(400θ)+tan10tan100tan800tan890 =sin{900(400θ)}cos(400θ)+{tan10tan(90010)}{tan100tan(90010)} =cos(400θ)cos(400θ)+(tan10cot10)(tan100cot100) =(1cot10×cot10)(tan100×1tan100) =1×1 =1=R.H.S

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon