wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
(i) sinα+sinβ+sinγsin(α+β+γ)=4sin(α+β2)sin(β+γ2)sin(γ+α2)

(ii) cos(A+B+C)+cos(AB+C)+cos(A+BC)+cos(A+B+C)=4cosA cosB cosC

Open in App
Solution

(i) sinα+sinβ+sinγsin(α+β+γ)=4sin(α+β2)sin(β+γ2)sin(γ+α2)
We have,
LHS=sinα+sinβ+sinγsin(α+β+γ)=(sinα+sinβ)+[sinγsin(α+β+γ)]=2sin(α+β2)cos(α+β2)+2sin(γ(α+β+γ)2)cos(γ+(α+β+γ)2)=2sin(α+β2)cos(αβ2)+2sin(αβ2)cos(α+β+2γ2)=2sin(α+β2)cos(αβ2)2sin(α+β2)cos(α+β+2γ2)=2sin(α+β2)[cos(αβ2)cos(α+β+2γ2)]=2sin(α+β2)2sin[αβ2+]sin[α+β+2γ2]2=2sin(α+β2)[2sin[1α+2γ2×2]sin[2β2γ2×2]]=4(α+β2)[sin(α+γ2)sin[(β+γ)2]]=4sin(α+β2)sin(α+γ2)sin(β+γ2)=4sin(α+β2)sin(β+γ2)sin(α+γ2)=RHSsinα+sinβ+sinγsin(α+β+γ)=4sin(α+β2)sin(β+γ2)sin(γ+α2)

(ii) cos(A+B+C)+cos(AB+C)+cos(A+BC)+cos(A+B+C)=4cosA cosB cosC
We have,
LHS=cos(A+B+C)+cos(AB+C)+cos(A+BC)+cos(A+B+C)=2cos{A+B+C+AB+C2}cos{A+B+C+A+BC2}+2cos{A+BCAB+C2}cos{A+BC+ABC2}=2cos{2A+2C2}cos{2B2}+2cos{2B2}cos{2A2C2}=2cos(A+C)cos(B)+2cos(B)cos(AC)=2cos(B)[cos(A+C)+cos(AC)]=2cos(B)[2cos(A+C+AC2)cos(A+CA+C2)]=2cos(B)[2cosA cosC]=4cosA cosB cosC


flag
Suggest Corrections
thumbs-up
16
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon