wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that
(i) sin(θπ6)+cos(θπ3)=3.sinθ
(ii) If2sin(θ+π3)=cos(θπ6),thentanθ+3=0

Open in App
Solution

(i)Sin(θπ/6)+cos(θπ3)=3sinθ
LHS
sin(θπ/6)+cos(θπ3)=sinθcosπ/6sinπ/6cosθ+cosθcosπ3+sinθsin(π3)
=32sinθcosθ2+cosθ2+32sinθ
=3sinθ=RHS
LHS = LHS
sin(θπ6+cos(θπ3))=3sinθ
(ii) if
2sin(θ+π6)=cos(θπ6) then tanθ+3=0
2[sinθcosπ3+cosθsinπ3]=cos(cosπ6)+sinθ(sinπ6)
2×sinθ×12+2cosθ×32=cosθ×32+sinθ×12
sinθ×12+3cosθ2=0
sosθ2[sinθcosθ+3]=0
tanθ+3=0

1112232_1189912_ans_056d97fd233843a5bb41915fe9250d41.jpeg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon