Prove that:
(i) sin θ cos (90∘−θ)+sin(90∘−θ)cos θ=1
(ii) sin θcos (90∘−θ)+cos θsin (90∘−θ)=2
(iii) sin θ cos(90∘−θ)cos θsin (90∘−θ)+cos θ sin (90∘−θ)sin θcos (90∘−θ)=1
(iv) cos(90∘−θ)sec(90∘−θ)tan θcosec(90∘−θ)sin(90∘−θ)cot(90∘−θ)+tan(90∘−θ)cot θ=2
(v) cos(90∘−θ)1+sin(90∘−θ)+1+sin(90∘−θ)cos(90∘−θ)=2cosec θ
(vi) sec(90∘−θ)cosec θ−tan(90∘−θ)cot θ+cos225∘+cos265∘3 tan 27∘ tan 63∘=23
(vii) cot θ tan(90∘−θ)−sec(90∘−θ)cosec θ+√3 tan 12∘ tan 60∘ tan 78∘=2
(i) sin θ cos (90∘−θ)+sin(90∘−θ)cos θ=1LHS=sin θ cos (90∘−θ)+sin(90∘−θ)cos θ=sin θsin θ+cos θcos θ=sin2 θ+cos2 θ=1=RHS
Hence Proved
(ii) sin θcos (90∘−θ)+cos θsin (90∘−θ)=2LHS=sin θcos (90∘−θ)+cos θsin (90∘−θ)=sin θsin θ+cos θcos θ=1+1=2=RHS
Hence Proved
(iii) sin θ cos(90∘−θ)cos θsin (90∘−θ)+cos θ sin (90∘−θ)sin θcos (90∘−θ)=1LHS=sin θ cos(90∘−θ)cos θsin (90∘−θ)+cos θ sin (90∘−θ)sin θcos (90∘−θ)=sin θ sin θ cos θcos (θ)+cos θ cos θ sin θsin θ=sin2 θ+cos2 θ=1=RHS
Hence Proved
(iv) cos(90∘−θ)sec(90∘−θ)tan θcosec(90∘−θ)sin(90∘−θ)cot(90∘−θ)+tan(90∘−θ)cot θ=2LHS=cos(90∘−θ)sec(90∘−θ)tan θcosec(90∘−θ)sin(90∘−θ)cot(90∘−θ)+tan(90∘−θ)cot θ=sin θ cosec θ tan θsec θ cos θ tan θ +cot θcot θ=1+1=2=RHS
Hence Proved
(v) cos(90∘−θ)1+sin(90∘−θ)+1+sin(90∘−θ)cos(90∘−θ)=2cosec θLHS=cos(90∘−θ)1+sin(90∘−θ)+1+sin(90∘−θ)cos(90∘−θ)=sin θ1+cos θ+1+cos θsin θ=sin2 θ+(1+cos θ)2(1+cos θ)sin θ=sin2 θ+1+cos2 θ+2cos θ(1+cos θ)sin θ=1+1+2cos θ(1+cos θ)sin θ=2+2cos θ(1+cos θ)sin θ=2(1+cos θ)(1+cos θ)sin θ=2sin θ=2cosec θ=RHS
Hence Proved
(vi) sec(90∘−θ)cosec θ−tan(90∘−θ)cot θ+cos225∘+cos265∘3 tan 27∘ tan 63∘=23LHS=sec(90∘−θ)cosec θ−tan(90∘−θ)cot θ+cos225∘+cos265∘3 tan 27∘ tan 63∘=cosec θcosec θ–cot θcot θ+sin2(90∘–25∘)+cos265∘3tan27∘cot(90∘–63∘)=cosec2Θ–cot2+sin2 65∘+cos2 65∘3tan27∘cot27∘=1+13=23=RHS
(vii) cot θ tan(90∘−θ)−sec(90∘−θ)cosec θ+√3 tan 12∘ tan 60∘ tan 78∘=2LHS=cot θ tan(90∘−θ)−sec(90∘−θ)cosec θ+√3 tan 12∘ tan 60∘ tan 78∘=cot θ cot θ –cosec θ cosec θ +√3tan12∘×√3×cot(90∘–78∘)=cot2 θ –cosec2 θ +3tan12∘cot12∘=−1+3=2=RHS