wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:

(i) sin θ cos (90θ)+sin(90θ)cos θ=1

(ii) sin θcos (90θ)+cos θsin (90θ)=2

(iii) sin θ cos(90θ)cos θsin (90θ)+cos θ sin (90θ)sin θcos (90θ)=1

(iv) cos(90θ)sec(90θ)tan θcosec(90θ)sin(90θ)cot(90θ)+tan(90θ)cot θ=2

(v) cos(90θ)1+sin(90θ)+1+sin(90θ)cos(90θ)=2cosec θ

(vi) sec(90θ)cosec θtan(90θ)cot θ+cos225+cos2653 tan 27 tan 63=23

(vii) cot θ tan(90θ)sec(90θ)cosec θ+3 tan 12 tan 60 tan 78=2

Open in App
Solution

(i) sin θ cos (90θ)+sin(90θ)cos θ=1LHS=sin θ cos (90θ)+sin(90θ)cos θ=sin θsin θ+cos θcos θ=sin2 θ+cos2 θ=1=RHS

Hence Proved

(ii) sin θcos (90θ)+cos θsin (90θ)=2LHS=sin θcos (90θ)+cos θsin (90θ)=sin θsin θ+cos θcos θ=1+1=2=RHS

Hence Proved

(iii) sin θ cos(90θ)cos θsin (90θ)+cos θ sin (90θ)sin θcos (90θ)=1LHS=sin θ cos(90θ)cos θsin (90θ)+cos θ sin (90θ)sin θcos (90θ)=sin θ sin θ cos θcos (θ)+cos θ cos θ sin θsin θ=sin2 θ+cos2 θ=1=RHS

Hence Proved

(iv) cos(90θ)sec(90θ)tan θcosec(90θ)sin(90θ)cot(90θ)+tan(90θ)cot θ=2LHS=cos(90θ)sec(90θ)tan θcosec(90θ)sin(90θ)cot(90θ)+tan(90θ)cot θ=sin θ cosec θ tan θsec θ cos θ tan θ +cot θcot θ=1+1=2=RHS

Hence Proved

(v) cos(90θ)1+sin(90θ)+1+sin(90θ)cos(90θ)=2cosec θLHS=cos(90θ)1+sin(90θ)+1+sin(90θ)cos(90θ)=sin θ1+cos θ+1+cos θsin θ=sin2 θ+(1+cos θ)2(1+cos θ)sin θ=sin2 θ+1+cos2 θ+2cos θ(1+cos θ)sin θ=1+1+2cos θ(1+cos θ)sin θ=2+2cos θ(1+cos θ)sin θ=2(1+cos θ)(1+cos θ)sin θ=2sin θ=2cosec θ=RHS

Hence Proved

(vi) sec(90θ)cosec θtan(90θ)cot θ+cos225+cos2653 tan 27 tan 63=23LHS=sec(90θ)cosec θtan(90θ)cot θ+cos225+cos2653 tan 27 tan 63=cosec θcosec θcot θcot θ+sin2(9025)+cos2653tan27cot(9063)=cosec2Θcot2+sin2 65+cos2 653tan27cot27=1+13=23=RHS

(vii) cot θ tan(90θ)sec(90θ)cosec θ+3 tan 12 tan 60 tan 78=2LHS=cot θ tan(90θ)sec(90θ)cosec θ+3 tan 12 tan 60 tan 78=cot θ cot θ cosec θ cosec θ +3tan12×3×cot(9078)=cot2 θ cosec2 θ +3tan12cot12=1+3=2=RHS


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Complementary Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon