Prove that:
(i)tan225∘cot405∘+tan765∘cot675∘=0
(ii)sin8π3cos23π6+cos13π3sin35π6=12
(iii)cos24∘+cos55∘+cos125∘+cos204∘+cos300∘=12
(iv)tan(−225∘)cot(−405∘)−tan(−765∘)cot(675∘)=0
(v)cos570∘sin510∘+sin(−330∘)cos(−390∘)=0
(vi)tan11π3−2sin4π6−34cosec2π4+4cos217π6=3−4√32
(vii)3sinπ6secπ3−4sin5π5cotπ4=1
(i)LHS=tan225∘cot405∘+tan765∘cot675∘
=tan(π+π4)cot(2π+π4)+tan(4π+π4)cot(4π−π4)
=tanπ4.cotπ4+tanπ4×(−cotπ4)
[∵cot(4π−π4)=−cotπ4]
=1.1 +1.(-1)
=RHS Hence proved.
(ii)LHS=sin8π3cos23π6+cos13π3sin35π6
=sin(3π−π3)cos(4π−π6)+cos(4π+π3)sin(6π−π6)
=sinπ3cosπ6+cosπ3(−sinπ6)
[∵sin(6π−θ)=−sinθ]
=√32×√322+12×(−12)
=34−14
=24
=12=RHS Hence proved.
(iii)LHS=cos24∘+cos55∘+cos125∘+cos204∘+cos300∘
=cos24∘+cos204∘+cos55∘+cos125∘+cos300∘
=cos24∘+cos(π+24∘)+cos55∘+cos(π−55∘)+cos(2π−π3)
=cos24∘−cos24∘+cos55∘−cos55∘+cosπ3
=cosπ3
=12=RHS Hence proved.
(iv)LHS=tan(−225∘)cot(−405∘)−tan(−765∘)cot(675∘)
=−tan225∘(−cot405∘)+tan765∘cot765∘
[∵tan(−θ)=−tanθ and cot(−θ)=−cotθ]
=tan(π+π4)cot(2ππ4)+tan(4π+π4)cot(4π−π4)
=tanπ4cotπ4+tanπ4×(−cotπ4)[∵cot(4π−θ)=−cotθ]
=1.1+1(-1)=1-1=0=RHS Hence proved.
(v)LHS=cos 570∘ sin 510∘+sin(−330∘)cos(−390∘)
=cos(3π+π6)sin(3π−π6)−sin330∘cos390∘
[∵sin(−θ)=−sinθandcos(−θ)=cosθ]
=−cosπ6sinπ6−sin(2π−π6)cos(2π+π6)
=−sinπ6cosπ6+sinπ6cosπ6[∵sin(2π−θ)=−sinθ]
0=RHS Hence proved.
(vi)LHS=tan11π3−2sin4π6−34cosec2π4+4cos217π6
=tan(4π−π3)−2sin2π3−34×(√2)2+4cos2(3π−π6)
=−tanπ3−2sin(π−π3)−34×2+4cos2π6
(∵tan(4π−π3)=−tanπ3,cos(3π−π6)=−cosπ6)
=−√3−2sinπ3−32+4×(√32)2
=−√3−2×√32−32+4×34
=−√3−√3−32+3=−2√3−3+62=−2√332
=3−4√32 =RHS Hence proved.
(vii)LHS=3sinπ6secπ3−4sin5π6cotπ4
=3×12×2−4sin(π−π6)×1
=3−4siinπ6[∵sin(π−θ)=sinθ]
=3−4×12=3−2=1 =RHS Hence proved.