wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
(i) tan 225° cot 405° + tan 765° cot 675° = 0
(ii) sin8π3cos23π6+cos13π3sin35π6=12
(iii) cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = 12
(iv) tan (−225°) cot (−405°) −tan (−765°) cot (675°) = 0
(v) cos 570° sin 510° + sin (−330°) cos (−390°) = 0
(vi) tan11π3-2sin4π6-34cosec2π4+4cos217π6=3-432
(vii) 3sinπ6secπ3-4sin5π6cotπ4=1

Open in App
Solution

i LHS = tan225°cot405° + tan765°cot675° =tan 90°×2+45°cot 90°×4+45° + tan 90°×8+45° cot 90°×7+45° =tan 45° cot 45° + tan 45°-tan 45° = 1×1 + 1×-1 = 1-1 = 0 = RHSHence proved.

ii LHS = sin8π3cos23π6+cos13π3sin35π6 = sin 83×180° cos 236×180°+cos 133×180° sin 356×180° =sin 480° cos 690°+cos 780° sin 1050° =sin 90°×5+30° cos 90°×7+60°+cos 90°×8+60° sin 90°×11+60° =cos 30° sin 60°+cos 60°-cos 60° =32×32+12×-12 =34 - 14 = 24 =12 = RHSHence proved.

iii LHS = cos 24° + cos 55° + cos 125° + cos 204° + cos 300° = cos 24° + cos 90°-35° + cos 90°×1+35°+ cos 90°×2+24° + cos 90°×3+30° =cos 24° + sin 35° - sin 35°- cos 24° + sin 30° =0 + 0+ 12 = 12 = RHSHence proved.

iv LHS = tan -225° cot -405° - tan -765° cot 675° =- tan 225°-cot 405° - -tan 765° cot 675° tan -x = tan x and cot -x = -cot x = tan 225° cot 405° +tan 765° cot 675° =tan 90°×2+45° cot 90°×4+45° + tan 90°×8+45° cot 90°×7+45° =tan 45° cot 45° + tan 45°-tan 45° = 1×1 + 1×-1 = 1-1 = 0 = RHSHence, proved.

v LHS =cos 570°sin 510° + sin -330°cos -390° =cos 570° sin 510° + -sin 330°cos 390° sin-x = -sin x and cos-x = cos x =cos 570°sin510° -sin 330° cos 390° =cos 90°×6+30° sin 90°×5+60° -sin 90°×3+60° cos 90°×4+30° =-cos 30° cos 60° --cos 60° cos 30° =-cos 30° cos 60° +cos 30° sin 60° = 0 = RHSHence proved.

vi LHS = tan11π3-2sin4π6-34cosec2π4+4cos217π6 = tan11π3-2sin4π6-34cosecπ42+4cos17π62 = tan113×180°-2sin46×180°-34cosec180°42+4cos17×180°62 = tan 660°-2sin 120°-34cosec45°2+4cos 510°2 =tan 660°-2sin 120°-34cosec45°2+4cos 510°2 =tan 90°×7+30°-2sin 90°×1+30°-34cosec45°2+4cos90°×5+60°2 =-cot 30°-2cos 30°-34cosec 45°2+4-sin60°2 =-cot 30°-2cos 30°-34cosec45°2+4sin 60°2 =-3-232-3422+4322 =-3-3-32+3 =3-432 = RHSHence proved.

vii LHS = 3sinπ6secπ3-4sin5π6cotπ4 = 3sin180°6sec180°3-4sin5×180°6cot180°4 =3sin30°sec60°-4sin150°cot45° =3sin30°sec60°-4sin90°×1+60°cot45° =3sin 30°sec 60°-4cos 60° cot 45° =3×12×2 - 4×12×1 =3 - 2 =1 = RHSHence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon