wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
(i) tan 4π-cos3π2-sin5π6cos2π3=14

(ii) sin13π3sin8π3+cos2π3sin5π6=12

(iii) sin 13π3sin2π3+cos4π3sin13π6=12

(iv) sin10π3cos13π6+cos8π3sin5π6=-1

(v) tan5π4cot9π4+tan17π4cot15π4=0

Open in App
Solution

i 4π=720°, 3π2=270°, 5π6=150°, 2π3=120° LHS = tan720° -cos270° - sin150° cos120° = tan90°×8+0° -cos90°×3+0° - sin90°×1+60° cos90°×1+30° = tan0° -sin0° - cos60° -sin30° = tan0° -sin0° + cos60° sin30° = 0-0 + 12× 12 = 14 =RHSHence proved.

ii 13π3=780°, 8π3=480°,2π3=120°,5π6=150° LHS = sin 780° sin 480° + cos 120° sin150° =sin 90°×8+60° sin 90°×5+30° + cos 90°×1+30° sin 90°×1+60° = sin 60° cos 30° + -sin 30° cos 60° =sin 60° cos 30° - sin 30° cos60° = 32×32-12×12 =34-14 = 12 =RHSHence proved.

iii 13π3=780°, 2π3=120°,4π3=240°,13π6=390°LHS = sin780° sin120° + cos240° sin390° =sin90°×8+60° sin90°×1+30° + cos90°×2+60° sin90°×4+30° = sin 60° cos 30° + -cos 60° sin 30° =sin 60° cos 30° -cos 60°sin 30° = 32×32-12×12 =34-14 = 12 =RHSHence proved.

iv 10π3=600°, 13π6=390°,8π3=480°,5π6=150°LHS = sin 600°cos 390°+cos 480° sin 150° =sin 90°×6+60° cos90°×4+30°+cos90°×5+30° sin90°×1+60° = -sin 60° cos30°+ -sin 30° cos 60° =-sin 60° cos30° -sin 30° cos 60° = -32×32-12×12 =-34- 14 = -1 =RHSHence proved.

v 5π4=225°, 9π4=405°,17π4=765°,15π4=675°LHS = tan 225°cot 405°+tan 765° cot 675° = tan90°×2+45°cot90°×4+45°+tan90°×8+45° cot90°×7+45° =tan 45°cot 45°+tan 45° -tan45° =tan 45°cot 45°-tan 45° tan 45° =1×1-1×1 =1-1 = 0 =RHSHence proved.

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon