wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:

(i) tan 5 tan 25 tan 30 tan 65 tan 85=13

(ii) cot 12 cot 38 cot 52 cot 60 cot 78=13

(iii) cos 15 cos 35 cosec 55 cos 60 cosec 75=12

(iv) cos 1 cos 2 cos 3...cos 180=0

(v) (sin 49cos 41)2+(cos 41sin 49)2=2

Open in App
Solution

(i) tan 5 tan 25 tan 30 tan 65 tan 85=13LHS=(tan 5 tan 25 tan 30 tan 65 tan 85=tan(90o85o)×tan(90o65v)×13×1cot65o×1cot85o=cot85o×cot65o×13×1cot65o×1cot85o=13=RHS


(ii) cot 12 cot 38 cot 52 cot 60 cot 78=13LHS=cot 12 cot 38 cot 52 cot 60 cot 78=tan(90o12o)×tan(90o38o)×cot52o×13×cot78o=13×tan78o×tan52o×cot52o×cot78o=13×tan78o×tan52o×1tan52o×1tan78o=13=RHS

(iii) cos 15 cos 35 cosec 55 cos 60 cosec 75=12LHS=cos 15 cos 35 cosec 55 cos 60 cosec 75=cos(9075)×cos(9055)×1sin55×12×1sin75=sin75×sin55×1sin55×12×1sin75=12=RHS


(iv) cos 1 cos 2 cos 3...cos 180=0LHS=cos 1 cos 2 cos 3...cos 180=cos 1 cos 2 cos 3×cos 90×cos 180=cos 1 cos 2 cos 3×0×cos 180=0=RHS

(v) (sin 49cos 41)2+(cos 41sin 49)2=2LHS=(sin 49cos 41)2+(cos 41sin 49)2=(cos (9049)cos 41)2+(cos 41cos (9049))2=(cos 41cos 41)2+(cos 41cos 41)2=12+12=1+1=2=RHS


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Complementary Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon