Prove that:
(i)tan720∘−cos270∘−sin150∘cos120∘=14
(ii)sin780∘sin480∘+cos120∘sin150∘=12
(iii)sin780∘sin120∘+cos240∘sin390∘=12
(iv)sin600∘cos390∘+cos480∘sin150∘=−1
(v)tan250∘cot405∘+tan765∘cot675∘=0
(i)LHS=tan720∘−cos270∘−sin150∘cos120∘
=tan4π−cos(3π2)−sin(π−π6)
cos(π2+π6)[∵π=180∘]
=0−0−sinπ6(−sinπ6)
[∵tannπ=0foralln∈Zandcos3π2=0]
=sin2π6
=(12)2=14=RHS
Hence proved.
(ii)LHS=sin780∘sin480∘+cos120∘sin150∘
=sin(4π+π3)sin(3π−π3)+cos
(π2+π6)sin(π−π6)
[∵π=180∘]
=sinπ3×sinπ3+(−sinπ6)sinπ6
⎡⎢⎣∵sin(4π+π3)=sinπ3and sin(3π+π3)=sinπ3⎤⎥⎦
=√32×√32−12×12=34−14
=24=12=RHS Hence proved.
(iii)LHS=sin780∘sin120∘+cos240∘sin390∘
=sin(4π+π3)sin(π2+π6)+cos(π+π6)sin(2π+π6)
=sinπ3×cosπ6−cosπ3×(+sinπ6)
=√32×√32−12×12
=34−14
=12=12=RHS Hence proved.
(iv)LHS=sin600∘cos390∘+cos480∘sin150∘
=sin(3π+π3)cos(2π+π6)+cos(3π−π3)sin(π−π6)
=−sinπ3cosπ6−cosπ3−sinπ6
⎡⎢⎣∵sin(3π+π3)=−sinπ3 and cos(3π−π3)=−cosπ3⎤⎥⎦
=−√32×−sqrt32−12×12=−34−14=−44
=-1 =RHS Hence proved.=
(v)LHS=tan225∘cot405∘+tan765∘cot675∘
=tan(π+π4)cot(2π+π4)(4π+π4)cot(4π−π4)
=tanπ4cotπ4+tanπ4(−cotπ4)
=1.1 +1.(-1)=0 RHS Hence proved.