wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
(i) tan 720° − cos 270° − sin 150° cos 120° = 14
(ii) sin 780° sin 480° + cos 120° sin 150° = 12
(iii) sin 780° sin 120° + cos 240° sin 390 = 12
(iv) sin 600° cos 390° + cos 480° sin 150° = −1
(v) tan 225° cot 405° + tan 765° cot 675° = 0

Open in App
Solution

i LHS = tan720° -cos270° - sin150° cos120° = tan90°×8+0° -cos90°×3+0° - sin90°×1+60° cos90°×1+30° = tan0° -sin0° - cos60° -sin30° = tan0° -sin0° + cos60° sin30° = 0-0 + 12× 12 = 14 =RHSHence proved.

ii LHS = sin 780° sin 480° + cos 120° sin150° =sin 90°×8+60° sin 90°×5+30° + cos 90°×1+30° sin 90°×1+60° = sin 60° cos 30° + -sin 30° cos 60° =sin 60° cos 30° - sin 30° cos60° = 32×32-12×12 =34-14 = 12 =RHSHence proved.

iii LHS = sin780° sin120° + cos240° sin390° =sin90°×8+60° sin90°×1+30° + cos90°×2+60° sin90°×4+30° = sin 60° cos 30° + -cos 60° sin 30° =sin 60° cos 30° -cos 60°sin 30° = 32×32-12×12 =34-14 = 12 =RHSHence proved.

iv LHS = sin 600°cos 390°+cos 480° sin 150° =sin 90°×6+60° cos90°×4+30°+cos90°×5+30° sin90°×1+60° = -sin 60° cos30°+ -sin 30° cos 60° =-sin 60° cos30° -sin 30° cos 60° = -32×32-12×12 =-34- 14 = -1 =RHSHence proved.

v LHS = tan 225°cot 405°+tan 765° cot 675° = tan90°×2+45°cot90°×4+45°+tan90°×8+45° cot90°×7+45° =tan 45°cot 45°+tan 45° -tan45° =tan 45°cot 45°-tan 45° tan 45° =1×1-1×1 =1-1 = 0 =RHSHence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon