wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
(i) tan 8x − tan 6x − tan 2x = tan 8x tan 6x tan 2x
(ii) tanπ12+tanπ6+tanπ12tanπ6=1
(iii) tan 36° + tan 9° + tan 36° tan 9° = 1
(iv) tan 13x − tan 9x − tan 4x = tan 13x tan 9x tan 4x

Open in App
Solution

i We know that 8x = 6x + 2xTherefore, tan8x = tan6x + 2x tan8x =tan6x+tan2x1 - tan6x tan2xtan8x - tan8x tan6x tan2x = tan6x + tan2xtan8x - tan6x - tan2x =tan8x tan6x tan2xHence proved.

ii π12=15°, π6=30°We know that 45° = 15° + 30°Therefore,tan45° = tan15°+30°1 = tan15° + tan30°1 - tan15° tan30° 1 - tan15° tan30° = tan15° + tan30° 1 = tan15° + tan30° + tan15° tan30° tan15° + tan30° + tan15° tan30°= 1Hence proved.

iii We know that 36° + 9° = 45°Therefore, tan36° + 9° = tan45°tan36° + tan9°1 - tan36° tan9° = 1tan36° + tan9° = 1 - tan36° tan9°tan36° + tan9° + tan36° tan9° = 1Hence proved.

iv We know that 13x = 9x + 4xTherefore, tan13x = tan9x + 4xtan13x = tan9x + tan4x1 - tan9x tan4xtan13x - tan13x tan9x tan 4x = tan9x + tan4xtan13x - tan9x - tan4x = tan13x tan9x tan4x Hence proved.

flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon