wiz-icon
MyQuestionIcon
MyQuestionIcon
5
You visited us 5 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:

(i) tan5° tan25° tan30° tan65° tan85° = 13
(ii) cot12° cot38° cot52° cot60° cot78° = 13
(iii) cos15° cos35° cosec55° cos60° cosec75° = 12
(iv) cos1° cos2° cos3° ... cos180° = 0
(v) sin49°cos41°2+cos41°sin49°2=2

Open in App
Solution

(i) LHS=tan50tan250tan300tan650tan850 =tan(900850)tan(900650)×13×1cot6501cot850 =cot850cot650131cot6501cot850 =13=RHS

ii LHS=cot12° cot38° cot52° cot60° cot78°=tan90°-12°×tan90°-38°×cot52°×13×cot78°=13×tan78°×tan52°×cot52°×cot78°=13×tan78°×tan52°×1tan52°×1tan78°=13=RHS

(iii) LHS=cos150cos350cosec550cos600cosec750 =cos(900750)cos(900550)1sin550×12×1sin750 =sin750sin5501sin550×12×1sin750 =12=RHS

iv LHS=cos1° cos2° cos3° ... cos180°=cos1°×cos2°×cos3°×...×cos90°×...cos180°=cos1°×cos2°×cos3°×...×0×...cos180°=0=RHS

v LHS=sin49°cos41°2+cos41°sin49°2=cos90°-49°cos41°2+cos41°cos90°-49°2=cos41°cos41°2+cos41°cos41°2=12+12=1+1=2=RHS

Disclaimer: The RHS of (v) given in textbook is incorrect. There should be 2 instead 1. The same has been corrected in the solution here.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon