wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
(i) tan8θtan6θtan2θ=tan8θtan6θtan2θ
(ii) tan15+tan30+tan15tan30=1
(iii) tan36+tan9+tan36tan9=1
(iv) tan13θtan9θtan4θ=tan13θtan9θtan4θ

Open in App
Solution

(i) We have,
8θ=6θ+2θ
tan8θ=tan(6θ+2θ)
tan8θ=tan6θ+tan2θ1tan6θtan2θ
tan8θ(1tan6θtan2θ)=tan6θ+tan2θ
tan8θtan8θtan6θtan2θ=tan6θ+tan2θ
tan8θtan6θtan2θ=tan8θtan6θtan2θ
Hence proved.
(ii) We have, 45=tan(30+15)
1=tan30+tan151tan30tan15
1tan30tan15=tan15+tan30
1=tan15+tan30+tan30tan15
tan15+tan30+tan15tan30=1
Hence proved.
(iii) We have,
45=9+36
tan45=tan(9+36)
1=tan9+tan361tan9tan36
1tan9tan36=tan9+tan36
1=tan9+tan36+tan9tan36
tan9+tan36+tan9tan36=1
Hence proved.
(iv)We have,
13θ=9θ+4θ
tan13θ=tan(9θ+4θ)
13θ=tan9θ+tan4θ1tan9θtan4θ
tan13θ(1tan9θtan4θ)=tan9θ+tan4θ
tan13θtan13θtan9θtan4θ=tan9θ+tan4θ
tan13θtan9θtan4θ=tan13θtan9θtan4θ
Hence proved.

flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon