Prove that
(i) cos(π4+x)+ cos(π4−x) = √2 cos x
(ii) cos(3π4+x)− cos(3π4−x) =− √2 sin x
(i)LHS= cos(π4 + x ) + cos (π4−x)
=2 cos π4 cos x [∵cos (A+B)+cos(A−B)=2cosAcosB]
=(2×1√2cos x)=√2 cosx=RHS.
(ii) LHS=cos(3π4+x)−cos(3π4−x)
=−2sin3π4 sinx
[∵ cos (A+B) − cos (A−B)=−2 sin A sin B ]
=−2 sin(π−π4)sin x
=−2 sin π4 sin x [∵ sin (π−π4)=sinπ4]
= (−2×1√2)sinx=−√2 sin x=RHS.