wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that if A+B+C=π,cotA32+cotB2+cotC2=cotA2.cotB2.cotC2

Open in App
Solution

As A+B+C=π, so,

A2+B2+C2=π2

A2+B2=π2C2

Multiply both sides by tan,

tan(A2+B2)=tan(π2C2)


tanA2+tanB21tanA2tanB2=cotC2


1cotA2+1cotB21⎜ ⎜ ⎜1cotA2⎟ ⎟ ⎟⎜ ⎜ ⎜1cotB2⎟ ⎟ ⎟=cotC2


cotB2+cotA2cotA2cotB21=cotC2


cotB2+cotA2=(cotA2cotB21)cotC2

cotA2+cotB2+cotC2=cotA2cotB2cotC2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon