Since cos α + i sin α is the root of the given equation, we have
(cosα+isinα)n+p1(cosα+isinα)n−1
+p2(cosα+isinα)n−2+...pn=0
(cosα+isinα)n[1+p1eiα+p2e−2iα+p3e−3iα+.....+pne−2iα=0
Now cos α + i sin α ≠ 0 for any α, we can cancel the factor (cosα+isinα)n in the equation (1). hence (1) can be written as
1+p1(cosα−isinα)+p2(cos2α−isin2α)+p3(cos3α−isin3α)+......+pn(cosnα−isinnα)=0
Equating imaginary part to 0 in (2), we get
p1sinα+p2sin2α+p3sin3α+.....pnsinnα=0.
Equating real parts in (2), we shall obtain
1+p1cosα+p2cos2α+.....pncosnα=0