wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that if cosα+sinα is a solution of the equation
xn+P1Xn1+p2Xn2+....+Pn=0
then P1sinα+P2sin2α+....+Pnsinnα=0
( P_1 , P_2 , ......, P_n are real)

Open in App
Solution

Since cos α + i sin α is the root of the given equation, we have
(cosα+isinα)n+p1(cosα+isinα)n1
+p2(cosα+isinα)n2+...pn=0
(cosα+isinα)n[1+p1eiα+p2e2iα+p3e3iα+.....+pne2iα=0
Now cos α + i sin α 0 for any α, we can cancel the factor (cosα+isinα)n in the equation (1). hence (1) can be written as
1+p1(cosαisinα)+p2(cos2αisin2α)+p3(cos3αisin3α)+......+pn(cosnαisinnα)=0
Equating imaginary part to 0 in (2), we get
p1sinα+p2sin2α+p3sin3α+.....pnsinnα=0.
Equating real parts in (2), we shall obtain
1+p1cosα+p2cos2α+.....pncosnα=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon