Prove that if 12≤x≤1 then, cos−1x+cos−1[x2+√3−3x22]=π3.
Open in App
Solution
Let θ=cos−1x. Then for all ϵ[12,1],θϵ[0,π3]. Also x=cosθ. Consider LHS : Let y=cos−1x+cos−1[x2+√3−3x22]=θ+cos−1[cosθ2]+√32√1−cos2θ ⇒y=θ+cos−1[12cosθ+√32sinθ]=θ+cos−1[cos(θ−π3)] ∵0≤θ≤π3⇒−π3≤θ−π3≤0⇒0≤π3−θ≤π3 ∴y=θ+cos−1[cos(π3−θ)]=θ+π3−θ=π3=RHS.