To Prove : 1sin(x−a)cos(x−b)=cot(x−a)+tan(x−b)cos(a−b)
Taking R.H.S.
cot(x−a)+tan(x−b)cos(a−b)
cos(x−a)sin(x−a)+sin(x−b)cos(x−b)cos(a−b)
=cos(x−b)cos(x−a)+sin(x−b)sin(x−a)sin(x−a)cos(x−b)cos(a−b)
[∵cosAcosB+sinAsinB=cos(A−B)]
=cos(x−b−x+a)sin(x−a)cos(x−b)cos(a−b)
=1sin(x−a)cos(x−b)
Hence proved.