wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

prove that inA-cosA+1÷sinA+cosA-1=1÷secA-tanA using identity sec2A = 1+tan2A

Open in App
Solution

(sin A-cos A+1)/(sin A+cosA-1)=1/(sec A-tan A)

L.H.S. divide above and below by cos A

=(tan A-1+secA)/(tan A+1-sec A)

=(tan A-1+secA)/(1-sec A+tan A)

We know that 1+tan^2(A)=sec ^2(A)

Or put in deminator 1=sec^2(A)-tan ^2(A)=(sec A+tan A)(secA-tanA)

=(sec A+tan A-1)/[(sec A+tan A)(sec A-tan A)-(sec A-tan A)]

=(sec A+tan A-1)/(sec A-tan A)(sec A+tan A-1)

= 1/(sec A-tan A) , proved.
LHS =RHS


flag
Suggest Corrections
thumbs-up
6
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon