sin x = sin2xsinx=sinx ∴, p(1) is true
Assume p(m) holds good
p ( m + 1) = p(m) + sin (2m + 1) x
= sin2mxsinx+sin(2m+1)x
= 12sinx[2sin2 mx + 2 sin x sin (2m +1)x]
= 12sinx[(1 - cos 2mx) + cos2mx - cos (2m + 2)x]
= 12sinx [1 - cos (2m + 2)x]
= 12sinx[2sin2(m+1)x]=sin2(m+1)xsinx
Thus p(m +1) also holds good