|z1+z2|2=(z1+z2)(¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯z1+z2)
=(z1+z2)(¯¯¯¯¯z1+¯¯¯¯¯z2)
=|z1|2+|z2|2+z1¯¯¯¯¯z2+¯¯¯¯¯¯¯¯¯z1¯¯¯¯¯z2
=|z1|2+|z2|2+2R(z1¯¯¯z2)
≤|z1|2+|z2|2+2∣∣z1¯¯¯¯¯z2∣∣
=|z1|2+|z2|2+2|z1||z2| ......(1)
Now λ>0∴√λ is real.
We write the last term in (1) as
2∣∣√λz1∣∣∣∣∣1√λz2∣∣∣.=2AB≤A2+B2
=λ|z1|2+1λ|z2|2. Put in (1) etc.