wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: 10log(1+x)(1+x2)dx=π8log2.

Open in App
Solution

Let I be the integral given to us.
I=10log1+x1+x2dx
Substitute x=tantdx=sec2tdt
I=π40log(1+tant)sec2tsec2tdt
I=π40log(1+tant)dt
Now, as a0f(x)dx=a0f(ax)dx, we have
I=π40log(1+tan(π4t))dt
I=π40log(1+1tant1+tant)dt (using tan(AB)=tanAtanB1+tanAtanB)
I=π40log(21+tant)dt
I=π40[log(2)log(1+tant)]dt
I=π40log(2)dtI
2I=π40log(2)dt
2I=tlog(2)|π40
2I=π4log(2)
I=π8log(2)
Hence, proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE using Quadratic Formula
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon