1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Property 1
Prove that ...
Question
Prove that
∫
0
1
sin
−
1
(
2
x
1
+
x
2
)
d
x
=
π
2
−
log
2
Open in App
Solution
Let
I
=
∫
0
1
sin
−
1
(
2
x
1
+
x
2
)
d
x
Put
x
=
tan
θ
⟹
d
x
=
sec
2
θ
d
θ
When,
x
=
0
, then
0
=
tan
θ
⟹
θ
=
0
When,
x
=
1
, then
1
=
tan
θ
⟹
θ
=
π
4
Therefore,
I
=
∫
o
π
/
4
sin
−
1
(
2
tan
θ
1
+
tan
2
θ
)
.
sec
2
θ
d
θ
I
=
∫
0
π
/
4
sin
−
1
(
sin
2
θ
)
.
sec
2
θ
d
θ
I
=
∫
0
π
/
4
2
θ
.
sec
2
θ
d
θ
Integrating by parts, we get,
I
=
[
2
θ
∫
sec
2
θ
d
θ
−
∫
(
d
d
θ
(
2
θ
)
∫
sec
2
θ
d
θ
)
d
θ
]
0
π
/
4
I
=
[
2
θ
tan
θ
]
0
π
/
4
−
∫
0
π
/
4
2
tan
θ
d
θ
I
=
[
2
×
π
4
tan
π
4
−
0
]
−
2
[
log
sec
θ
]
0
π
/
4
I
=
π
2
−
2
[
log
sec
π
4
−
log
sec
0
]
I
=
π
2
−
2
[
log
√
2
−
log
1
]
I
=
π
2
−
2.
1
2
log
2
=
π
2
−
log
2
Suggest Corrections
0
Similar questions
Q.
∫
1
0
s
i
n
−
1
(
2
x
1
+
x
2
)
d
x
=
Q.
∫
1
0
s
i
n
−
1
(
2
x
1
+
x
2
)
d
x
=
Q.
1
∫
0
sin
−
1
(
2
x
1
+
x
2
)
d
x
Q.
∫
1
0
s
i
n
−
1
(
2
x
1
+
x
2
)
d
x
=
[Karnataka CET 1999]