wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that
01sin1(2x1+x2)dx=π2log2

Open in App
Solution

Let I=01sin1(2x1+x2)dx

Put x=tanθdx=sec2θ dθ
When, x=0, then 0=tanθθ=0
When, x=1, then 1=tanθθ=π4

Therefore,
I=oπ/4sin1(2tanθ1+tan2θ).sec2θ dθ

I=0π/4sin1(sin2θ).sec2θ dθ

I=0π/42θ.sec2θ dθ

Integrating by parts, we get,
I=[2θsec2θ dθ(ddθ(2θ)sec2θ dθ)dθ]0π/4

I=[2θtanθ]0π/40π/42tanθ dθ

I=[2×π4tanπ40]2[logsecθ]0π/4

I=π22[logsecπ4logsec0]

I=π22[log2log1]

I=π22.12log2=π2log2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon