I=∫π0x.dxa2cos2x+b2sin2x ....(1)
I=∫π0(π−x).dxa2cos2(π−x)+b2sin2(π−x) using ∫a0f(x)dx=∫a0f(a−x)dx
⇒∫π0(π−x).dxa2cos2x+b2sin2x ........(2)
Adding (1) and (2) we get
2I=∫π0x.dxa2cos2x+b2sin2x+∫π0(π−x).dxa2cos2x+b2sin2x
⇒2I=∫π0π.dxa2cos2x+b2sin2x
⇒I=π2∫π0dxa2cos2x+b2sin2x
Divide the numerator and denominator by cos2x we get
⇒I=π2∫π0sec2xdxa2+b2tan2x
⇒I=π∫π20sec2xdxa2+b2tan2x using ∫2a0f(x)dx=2∫a0f(x)dx
Let btanx=t⇒bsec2xdx=dt
When x=0⇒t=0 and when x=π2⇒t=∞
⇒I=πb∫∞0dta2+t2
=πb1a[tan−1ta]∞0
=πab[tan−1∞−tan−10]
=πabπ2=π22ab