wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that ;
π0xdxa2cos2x+b2sin2x=π22ab

Open in App
Solution

I=π0x.dxa2cos2x+b2sin2x ....(1)
I=π0(πx).dxa2cos2(πx)+b2sin2(πx) using a0f(x)dx=a0f(ax)dx
π0(πx).dxa2cos2x+b2sin2x ........(2)
Adding (1) and (2) we get
2I=π0x.dxa2cos2x+b2sin2x+π0(πx).dxa2cos2x+b2sin2x
2I=π0π.dxa2cos2x+b2sin2x
I=π2π0dxa2cos2x+b2sin2x
Divide the numerator and denominator by cos2x we get
I=π2π0sec2xdxa2+b2tan2x
I=ππ20sec2xdxa2+b2tan2x using 2a0f(x)dx=2a0f(x)dx
Let btanx=tbsec2xdx=dt
When x=0t=0 and when x=π2t=
I=πb0dta2+t2
=πb1a[tan1ta]0
=πab[tan1tan10]
=πabπ2=π22ab

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Complementary Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon