wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that:
π/4π/4dx1+sinx=

Open in App
Solution

Apply u - substitution: u=tan(x2)
=21+u2+2udu
Take the constant out:af(x)dx=af(x)dx
=211+u2+2udu
Completethesquare:1 + u ^ { 2 } + 2 u : ( u + 1 ) ^ { 2 }$
=21(u+1)2du
Apply u- substitution: v=u+1
=21v2dv
=2v2dv
Apply the Power Rule: xadx=xa+1a+1,a1
=2v2+12+1
Substitute back v=u+1,u=tan(x2)
=2(tan(x2)+1)2+12+1
Simplify 2(tan(x2)+1)2+12+1:2tan(x2)+1
=2tan(x2)+1
Compute the boundaries: π4π411+sin(x)dx=2(22)
=2(22) =2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon