The given function is
y= 4sinθ ( 2+cosθ ) −θ.
Differentiate the function with respect to θ.
dy dθ = d dθ ( 4sinθ ( 2+cosθ ) −θ ) = d dθ ( 4sinθ ( 2+cosθ ) )− d dθ ( θ ) = ( 2+cosθ )( 4cosθ )−4sinθ( −sinθ ) ( 2+cosθ ) 2 −1 = 8cosθ+4 cos 2 θ+4 sin 2 θ ( 2+cosθ ) 2 −1
Further simplify the above expression.
dy dθ = 8cosθ+4( cos 2 θ+ sin 2 θ ) ( 2+cosθ ) 2 −1 = 8cosθ+4 ( 2+cosθ ) 2 −1 (1)
Substitute dy dθ =0
8cosθ+4 ( 2+cosθ ) 2 −1=0 8cosθ+4 ( 2+cosθ ) 2 =1 8cosθ+4=4+ cos 2 θ+4cosθ cos 2 θ+4cosθ−8cosθ=0
Further simplify the above expression.
cos 2 θ−4cosθ=0 cosθ( cosθ−4 )=0 cosθ=0 or cosθ=4
The value of cosθ cannot be equal to 4.
cosθ≠4 cosθ=0 cosθ=cos π 2 θ= π 2
Further simplify the equation (1).
dy dθ = 8cosθ+4−4− cos 2 θ−4cosθ ( 2+cosθ ) 2 = 4cosθ− cos 2 θ ( 2+cosθ ) 2 = cosθ( 4−cosθ ) ( 2+cosθ ) 2
In the interval 0<θ< π 2
( 4−cosθ )>0 dy dθ >0 cosθ( 4−cosθ ) ( 2+cosθ ) 2 >0
Thus, the function y= 4sinθ ( 2+cosθ ) −θ is strictly increasing in the interval ( 0, π 2 ).