wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that is an increasing function of θ in .

Open in App
Solution

The given function is

y= 4sinθ ( 2+cosθ ) θ.

Differentiate the function with respect to θ.

dy dθ = d dθ ( 4sinθ ( 2+cosθ ) θ ) = d dθ ( 4sinθ ( 2+cosθ ) ) d dθ ( θ ) = ( 2+cosθ )( 4cosθ )4sinθ( sinθ ) ( 2+cosθ ) 2 1 = 8cosθ+4 cos 2 θ+4 sin 2 θ ( 2+cosθ ) 2 1

Further simplify the above expression.

dy dθ = 8cosθ+4( cos 2 θ+ sin 2 θ ) ( 2+cosθ ) 2 1 = 8cosθ+4 ( 2+cosθ ) 2 1 (1)

Substitute dy dθ =0

8cosθ+4 ( 2+cosθ ) 2 1=0 8cosθ+4 ( 2+cosθ ) 2 =1 8cosθ+4=4+ cos 2 θ+4cosθ cos 2 θ+4cosθ8cosθ=0

Further simplify the above expression.

cos 2 θ4cosθ=0 cosθ( cosθ4 )=0 cosθ=0orcosθ=4

The value of cosθ cannot be equal to 4.

cosθ4 cosθ=0 cosθ=cos π 2 θ= π 2

Further simplify the equation (1).

dy dθ = 8cosθ+44 cos 2 θ4cosθ ( 2+cosθ ) 2 = 4cosθ cos 2 θ ( 2+cosθ ) 2 = cosθ( 4cosθ ) ( 2+cosθ ) 2

In the interval 0<θ< π 2

( 4cosθ )>0 dy dθ >0 cosθ( 4cosθ ) ( 2+cosθ ) 2 >0

Thus, the function y= 4sinθ ( 2+cosθ ) θ is strictly increasing in the interval ( 0, π 2 ).


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Monotonicity
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon