wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that (1+cosπ8)(1+cos3π8)(1+cos5π8)(1+cos7π8)=18

Open in App
Solution

(1+cosπ8)(1+cos3π8)(1+cos5π8)(1+cos7π8)=18

LHS=(1+cosπ8)(1+cos3π8)(1+cos5π8)(1+cos7π8)

=(1+cosπ8)(1+cos7π8)(1+cos3π8)(1+cos5π8)

=(1+cosπ8)(1+cos(ππ8))(1+cos3π8)(1+cos(π3π8))

=(1+cosπ8)(1cosπ8)(1+cos3π8)(1cos3π8)

=(1+cos2π8)(1cos23π8)

=sin2π8.sin23π8

Multiply and divide by 4, we get

=14(2sin2π8)(2sin23π8)

=14(1cosπ4)(1+cos3π4)

[1cos2θ=2sin22θ2]

[i.e.(1cosθ)=2sin2θ2]

=14(112)(1+12)

=14(112)

=14×12

=18

Hence, the answer is L.H.S=R.H.S.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon