wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that (1+cosθ+isinθ)n+(1+cosθisinθ)n=2n+1cosnθ2.cosnθ2, here nN

Open in App
Solution

(1+cosθ+isinθ)n=[2cos2θ2+i2sinθ2cosθ2]n=[2cosθ2(cosθ2+isinθ2)]n
=2ncosnθ2(cosnθ2+isinnθ2) ....(1)
Replacing i by i we get,
(1+cosθisinθ)n=2ncosnθ2(cosnθ2isinnθ2) ....(2)
Adding equations (1) and (2), we get
(1+cosθ+isinθ)n+(1+cosθisinθ)n=2ncosnθ2(2cosnθ2)
=2n+1cosnθ2.cosnθ2
Hence, proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon