Prove that (1+cosθ+isinθ)n+(1+cosθ−isinθ)n=2n+1cosnθ2.cosnθ2, here n∈N
Open in App
Solution
(1+cosθ+isinθ)n=[2cos2θ2+i2sinθ2cosθ2]n=[2cosθ2(cosθ2+isinθ2)]n =2ncosnθ2(cosnθ2+isinnθ2) ....(1) Replacing i by −i we get, (1+cosθ−isinθ)n=2ncosnθ2(cosnθ2−isinnθ2) ....(2) Adding equations (1) and (2), we get