1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Principal Solution of Trigonometric Equation
Prove that: ...
Question
Prove that:
(
1
+
cot
A
−
cosec
A
)
(
1
+
tan
A
+
sec
A
)
=
2.
Open in App
Solution
LHS =
1
+
cot
A
−
cosec
A
=
1
+
cos
A
sin
A
−
1
sin
A
=
(
sin
A
+
cos
A
−
1
)
sin
A
1
+
tan
A
+
sec
A
=
1
+
sin
A
cos
A
+
1
cos
A
=
(
sin
A
+
cos
A
+
1
)
cos
A
(
1
+
cot
A
−
cosec
A
)
(
1
+
tan
A
+
sec
A
)
=
(
sin
A
+
cos
A
−
1
)
(
sin
A
+
cos
A
+
1
)
sin
A
cos
A
=
(
sin
A
+
cos
A
)
2
−
1
sin
A
cos
A
=
1
+
2
sin
A
cos
A
−
1
sin
A
cos
A
=
2
=
R
H
S
Hence Proved
Suggest Corrections
0
Similar questions
Q.
Prove the following trigonometric identities.
(1 + cot A − cosec A) (1 + tan A + sec A) = 2