L.H.S
(1+cotθ−cosecθ)(1+tanθ+secθ)
=(1+cosθsinθ−1sinθ)(1+sinθcosθ+1cosθ)
=(sinθ+cosθ−1sinθ)(cosθ+sinθ+1cosθ)
=(sinθ+cosθ)2−12sinθcosθ
=sin2θ+cos2θ+2sinθcosθ−1sinθcosθ
=1+2sinθcosθ−1sinθcosθ
=2sinθcosθsinθcosθ
=2
R.H.S
Hence, proved.
Prove the following: (1+cot θ−cosec θ)(1+tan θ+sec θ)=2