wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: [1+1tan2θ][1+1cot2θ]=1sin2θsin4θ

Open in App
Solution

[1+1tan2θ][1+1cot2θ]=1sin2θsin4θ
Taking L.H.S., we have-
[1+1tan2θ][1+1cot2θ]
=[tan2θ+1tan2θ][cot2θ+1cot2θ]
=[sec2θtan2θ][csc2θcot2θ](1+tan2θ=sec2θ&1+cot2θ=csc2θ)
=⎢ ⎢ ⎢ ⎢(1cos2θ)(sin2θcos2θ)⎥ ⎥ ⎥ ⎥⎢ ⎢ ⎢ ⎢(1sin2θ)(cos2θsin2θ)⎥ ⎥ ⎥ ⎥
=[1sin2θ][1cos2θ]
=[1sin2θ][11sin2θ](sin2θ+cos2θ=1)
=1sin2θ(1sin2θ)
=1sin2θsin4θ
=R.H.S.
Hence, it is proved that L.H.S. = R.H.S., i.e., {[1+1tan2θ][1+1cot2θ]=1sin2θsin4θ}.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon