1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Trigonometric Ratios of Allied Angles
Prove that ...
Question
Prove that
(
1
−
sin
θ
+
cos
θ
)
2
=
2
(
1
+
cos
θ
)
(
1
−
sin
θ
)
Open in App
Solution
(
1
−
s
i
n
θ
+
c
o
s
θ
)
2
⇒
(
1
−
s
i
n
θ
)
2
+
c
o
s
2
θ
+
2
(
1
−
s
i
n
θ
)
(
c
o
s
θ
)
⇒
1
+
s
i
n
2
θ
−
2
s
i
n
θ
+
c
o
s
2
θ
+
2
(
1
−
s
i
n
θ
)
(
c
o
s
θ
)
⇒
2
−
2
s
i
n
θ
+
2
(
1
−
s
i
n
θ
)
(
c
o
s
θ
)
⇒
2
(
1
−
s
i
n
θ
)
+
2
(
1
−
s
i
n
θ
)
(
c
o
s
θ
)
⇒
2
(
1
−
s
i
n
θ
)
(
1
+
c
o
s
θ
)
Hence proved.
Suggest Corrections
0
Similar questions
Q.
Prove the following trigonometric identities.
(i)
1
+
sin
θ
-
cos
θ
1
+
sin
θ
+
cos
θ
2
=
1
-
cos
θ
1
+
cos
θ
(ii)
1
+
sec
θ
-
tan
θ
1
+
sec
θ
+
tan
θ
=
1
-
sin
θ
cos
θ