L.H.S
(1+tan2θ)(1+sinθ)(1−sinθ)
Since, x2−y2=(x+y)(x−y)
Therefore,
=(1+tan2θ)(1−sin2θ)
Since,
sec2x=1+tan2x
cos2x=1−sin2x
=sec2θ×cos2θ
=1cos2θ×cos2θ
=1
Hence, proved.