wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that :
∣ ∣ ∣xx2yzyy2zxzz2xy∣ ∣ ∣=(xy)(yz)(zx)(xy+yz+zx)

Open in App
Solution

Given ∣ ∣ ∣xx2yzyy2zxzz2xy∣ ∣ ∣

R1R1R2R2R2R3

=∣ ∣ ∣xyx2y2yzzxyzy2z2zxxyzz2xy∣ ∣ ∣

=∣ ∣ ∣(xy)(xy)(x+y)z(xy)(yz)(yz)(y+z)x(yz)zz2xy∣ ∣ ∣

=(xy)(yz)∣ ∣ ∣1(x+y)z1(y+z)xzz2xy∣ ∣ ∣

R1R1R2

=(xy)(yz)∣ ∣ ∣0(xz)(xz)1(y+z)xzz2xy∣ ∣ ∣

=(xy)(yz)(zx)∣ ∣ ∣0111(y+z)xzz2xy∣ ∣ ∣

C2C2C3

=(xy)(yz)(zx)∣ ∣ ∣0111y+z+xxzz2xyxy∣ ∣ ∣

ExpandingalongR1

=(xy)(yz)(xz)[z2xyz(x+y+z)]
=(xy)(yz)(xz)[z2xyzxyzz2]
=(xy)(yz)(zx)(xy+yz+zx)
=R.H.S
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon