Prove that:
(cos α+cos β)2+(sin α+sin β)2=4 cos2 (α−β2)
LHS
(cos α+cos β)2+(sin α+sin β)2=cos2 α+cos2 β+2 cos α cos β+sin2 α+sin2 β+2 sin α+sin β=(cos2 α+sin2 α)+(cos2 β+sin2 β)+2(cos α cos β+sin α sin β)=1+1+2 cos (α−β)=2+2 cos (α−β)=2(1+cos (α−β))=2.2 cos2 (α−β2)=4 cos2 (α−β2)
= RHS