We have,
(cosα+cosβ)2+(sinα+sinβ)2
⇒cos2α+cos2β+2cosαcosβ+sin2α+sin2β+2sinαsinβ
⇒sin2α+cos2α+sin2β+cos2β+2sinαsinβ+2cosαcosβ
⇒1+1+2(cosαcosβ+sinαsinβ)(∴sin2α+cos2α=1)
⇒2+2(cosαcosβ+sinαsinβ)
⇒2+2(cos(α−β))
⇒2(1+cos(α−β))∴cosθ=2cos2θ2−1
⇒2(1+2cos2(α−β)2−1)
⇒4cos2(α−β)2
Hence, this is the answer.