1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Circular Measurement of Angle
Prove that ...
Question
Prove that
(
1
s
e
c
2
θ
−
c
o
s
2
θ
+
1
c
o
s
e
c
2
θ
−
s
i
n
2
θ
)
s
i
n
2
θ
cos
2
θ
=
1
−
sin
2
θ
c
o
s
2
θ
2
+
s
i
n
2
θ
c
o
s
2
θ
Open in App
Solution
LHS
=
(
1
s
e
c
2
θ
−
c
o
s
2
θ
+
1
c
o
s
e
c
2
θ
−
s
i
n
2
θ
)
s
i
n
2
θ
cos
2
θ
=
(
cos
2
θ
1
−
cos
4
θ
+
sin
2
θ
1
−
sin
4
θ
)
sin
2
θ
cos
2
θ
=
(
cos
2
θ
−
sin
4
θ
cos
2
θ
+
sin
2
θ
−
sin
2
θ
cos
4
θ
(
1
−
cos
4
θ
)
(
1
−
sin
4
θ
)
)
sin
2
θ
cos
2
θ
=
(
1
−
sin
2
θ
cos
2
θ
(
sin
2
θ
+
cos
2
θ
)
1
−
sin
4
θ
−
cos
4
θ
+
sin
4
θ
cos
4
θ
)
sin
2
θ
cos
2
θ
=
(
1
−
sin
2
θ
cos
2
θ
1
−
(
sin
2
θ
+
cos
2
θ
)
2
+
2
sin
2
θ
cos
2
θ
+
sin
4
θ
cos
4
θ
)
sin
2
θ
cos
2
θ
=
(
1
−
sin
2
θ
cos
2
θ
2
sin
2
θ
cos
2
θ
+
sin
4
θ
cos
4
θ
)
sin
2
θ
cos
2
θ
=
(
1
−
sin
2
θ
cos
2
θ
sin
2
θ
cos
2
θ
(
2
+
sin
2
θ
cos
2
θ
)
)
sin
2
θ
cos
2
θ
=
1
−
sin
2
θ
cos
2
θ
2
+
sin
2
θ
cos
2
θ
=
R
H
S
Hence proved
Suggest Corrections
0
Similar questions
Q.
1
(
sec
2
θ
-
cos
2
θ
)
+
1
(
cosec
2
θ
-
sin
2
θ
)
(
sin
2
θ
cos
2
θ
)
=
1
-
sin
2
θcos
2
θ
2
+
sin
2
θ
cos
2
θ
Q.
Prove the following trigonometric identities.
1
sec
2
θ
-
cos
2
θ
+
1
cosec
2
θ
-
sin
2
θ
sin
2
θ
cos
2
θ
=
1
-
sin
2
θ
cos
2
θ
2
+
sin
2
θ
cos
2
θ