wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that (1sec2θcos2θ+1cosec2θsin2θ)sin2θcos2θ=1sin2θcos2θ2+sin2θcos2θ

Open in App
Solution

LHS=(1sec2θcos2θ+1cosec2θsin2θ)sin2θcos2θ

=(cos2θ1cos4θ+sin2θ1sin4θ)sin2θcos2θ

=(cos2θsin4θcos2θ+sin2θsin2θcos4θ(1cos4θ)(1sin4θ))sin2θcos2θ

=(1sin2θcos2θ(sin2θ+cos2θ)1sin4θcos4θ+sin4θcos4θ)sin2θcos2θ

=(1sin2θcos2θ1(sin2θ+cos2θ)2+2sin2θcos2θ+sin4θcos4θ)sin2θcos2θ

=(1sin2θcos2θ2sin2θcos2θ+sin4θcos4θ)sin2θcos2θ

=(1sin2θcos2θsin2θcos2θ(2+sin2θcos2θ))sin2θcos2θ

=1sin2θcos2θ2+sin2θcos2θ

=RHS

Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon