wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that (1+sinΘcosΘ1+sinΘ+cosΘ)2=1cosΘ1+cosΘ

Open in App
Solution

consider the problem

L.H.S =[1+sinθcosθ1+sinθ+cosθ]2

=[(1+sinθ)cosθ(1+sinθ)+cosθ×d(1+sinθ)cosθ(1+sinθ)cosθ]2=[1+sin2θ+cos2θ+2sinθ2sinθ.cosθ2cosθ1+sin2θ+2sinθcos2θ]2=[2+2sinθ2sinθ.cosθ2cosθ2sin2θ+2sinθ]2=[2(1+sinθ)2cosθ(sinθ+1)2sinθ(sinθ+1)]2=[(1+sinθ)(1cosθ)sinθ(sinθ+1)]2=(d1cosθsinθ)2=(1cosθ)2sin2θ=(1cosθ)2(1cosθ)(1+cosθ)

L.H.S=R.H.S

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon