we have,
L.H.S.
(1+tan2A1+cot2A)
=sec2Acsc2A
=1cos2A1sin2A
=sin2Acos2A
=tan2A
R.H.S.
Hence proved.Again,
We have
LHS.
(1−tanA1−cotA)2
=1+tan2A−2tanA1+cot2A−2cotA
=sec2A−2tanAcsc2A−2cotA
=1cos2A−2sinAcosA1sin2A−2cosAsinA
=1−2sinAcosAcos2A1−2sinAcosAsin2A
=sin2Acos2A
=tan2A
RHS.
Hence proved.