Prove that :
(i)(√3×5−3÷3√3−1√5)×6√3×56=35(ii)932−3×50−(181)−12=15(iii)(14)−2−3×823×40+(916)−12=163(iv)212×313×41410−15×535÷343×5−754−35×6=10(v)√14+(0.01)−12−(27)23=32(vi)2n+2n−12n+1−2n=32(vii)(64125)−23+1(256625)14+(√253√64)0=6116(viii)3−3×62×√9852×3√125×(15)−43×313=28√2(ix)(0.6)0−(0.1)−1(38)−1(32)3+(13)−1=−32
Prove that:(i) 13+√7+1√7+√5+1√5+√3+1√3+1=1(ii) 11+√2+1√2+√3+1√3+√4+1√4+√5+1√5+√6+1√6+√7+1√7+√8+1√8+√9=2