wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that (1+tan2A1+cot2A)=(1tanA1cotA)2=tan2A.

Open in App
Solution

LHS =(1+tan2A)(1+cot2A)
=sec2Acosec2A
=sin2Acos2A
=tan2A

Now,(1tanA1cotA)2
=1+tan2A2tanA1+cot2A2cotA
=sec2A2tanAcosec2A2cotA
=1cos2A 2sinAcosA×11sin2A2cosAsinA
=12sinAcosAcos2A×sin2A12cosAsinA
= sin2Acos2A
= tan2A

Hence,1+tan2A1+cot2A = (1tanA1cotA)2=tan2A

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identity- 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon