Prove that 64125−23+125662514+25643=6516.
Step 1: Factorise each term into prime numbers.
64125−23+125662514+25643=6516
Take LHS
=64125−23+125662514+25643=64125−23+256625−14+25643=1256423+62525614+25643∵p−n=1pn=5×5×54×4×423+5×5×5×54×4×4×414+5×54×4×43=534323+544414+52124313
Step 2: Simplify the above expression using the law of radical exponents.
534323+544414+52124313=54323+54414+52124313=543×23+544×14+52×1243×13=542+541+54=2516+54+54=25+20+2016=6516=RHS
Hence it is proved that 64125−23+125662514+25643=6516
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.
prove that (81/16) to the power -3/4× [(25/9) to the power -3/2÷ (5/2) to the power -3] = 1
Determine whether the following numbers are in proportion or not:
13,14,16,17